

EXPERIENCE OF RWFA FUEL IMPLEMENTATION AT KOZLODUY NPP UNIT 5

K. Kamenov, D. Hristov, A. Kamenov, S. Kolev, M. Milchev, A. Avramov, T. Nikolova, V. Naev
Kozloduy NPP Plc., Bulgaria

OUTLOOK

- 1. INTRODUCTION
- 2. RWFA DESIGN FEATURES
- 3. FUEL CYCLES WITH TVSA and RWFA
- 4. CODES USED **APA-H** and **HELHEX**
- 5. CORE DESIGN U5/C31
- 6. HZP START-UP TESTS U5/C31
- 7. CRITICAL BORIC ACID CONCENTRATION AT FULL POWER
- 8. ASSEMBLY AND NODAL POWER DISTRIBUTION U5/C31
- 9. CORE DESIGN U5/C32
- 10. ASSEMBLY AND NODAL POWER DISTRIBUTION U5/C32
- 11. APA-H SHELL DEVELOPED AT KNPP
- 12. CONCLUSIONS

1. INTRODUCTION

- The loading of Westinghouse **RWFA** VVER-1000 fuel in Kozloduy NPP and start of mixed core operation with **RWFA** and TVSA fuel, marks the completion of the qualification and licensing process for **RWFA** in Bulgaria.
- The qualification and licensing process of **RWFA** for KNPP started in 2018 with a feasibility study.
- After completion of the feasibility study, it was decided to continue with full licensing of **RWFA** for unit 5 and a contract was signed between KNPP and Westinghouse.
- On April 22nd BNRA issued a license for **RWFA** implementation on Unit 5, and in May 2024 the first 43 fresh **RWFA** were loaded in a mixed core with the resident TVSA for the cycle 31.
- The advanced **RWFA** assembly distinguishes itself with increased uranium content and enrichment up to 4.75wt%.
- This enables the safety and effectiveness of the fuel cycles to be increased.
- Neutron-physics characteristics for cycle 31st of Unit 5, calculated by **APA-H** and **HELHEX** code packages have been compared with relevant measured/reconstructed data.

2. RWFA – DESIGN FEATURES

E 1 1 1 1 1 1 0 1				
Fuel mass in Assembly, UO ₂ , kg	551			
Number of Fuel Assemblies	163			
Number of Fuel Rods and Gd-rods	300, 306 / 12, 6			
Fuel mass in FR/GdR, UO ₂ , kg	1.766 / 1.737			
Fuel pellet outer diameter, cm	0.7844			
Fuel pellet hole diameter, cm	0			
Cladding outer diameter, cm	0.9144			
Cladding inner diameter, cm	0.800			
Average enrichment, wt%	4.59, 4.19, 3.01			
Number of GdR	12, 12, 6			
Fuel Rods max enrichment, wt%	4.75 / 4.3 / 3.1			
Gd-rods enrichment, wt%	3.6, 3.2, 2.3			
Gd-rods Gd ₂ O ₃ content, wt%	5.0			

2. RWFA – DESIGN FEATURES

Fig. 2. 301WR layout

Fig. 3. 400WR / 419WR layout

Fig. 4. 459VR layout

3. CYCLE 31 WITH TVSA and RWFA

Fig. 5. Fuel assembly Burn-up at the beginning of cycle 31

4. CODES USED – APA-H and HELHEX

- **APA-H** code package developed in Westinghouse (ALPHA-H 8.10.3 / PHOENIX-H 8.8.2 / ANC-H 8.7.13) is used for core design and neutron-physics calculations. The neutronic cross-sections were prepared by the PHOENIX-H code using the 70-group cross-section library based on ENDF/B-VII.1.
- **HELHEX** code package developed at the Sofia University in 2013 is also used for neutronic calculations. **HELHEX** consists of a 3D two-group nodal diffusion code **HEX3DA** and a 3D two-group pin-by-pin diffusion code **HEX3DP**.
- **HEX3DA** employs the nodal method **HEXNEM3** (Christoskov, Petkov, 2012) which is an extension to the HEXNEM2 method implemented in the DYN3D code.
- **HEXNEM3** is based on transverse integration and a specific two-dimensional expansion of the intranodal fluxes in the hexagonal plane.
- The XS-libraries for **HELHEX** code package are generated using the **Helios-1.5** lattice code.
- The albedo side-group to side-group boundary conditions for the radial boundaries and group to group for the axial boundaries are calculated with the **Helios-Mariko** system.

4. CODES USED – APA-H and HELHEX

- •The two group diffusion equations in the 3D pin-by-pin code **HEX3DP** are solved using the finite difference method.
- •The boundary conditions are practically the same as for the nodal code **HEX3DA**, but the net current on the macro-cell boundaries is calculated for each micro-cell side, separately.
- •The energy collapsed and spatially homogenized diffusion parameters are corrected using the SPH-method (SuPerHomogenization, Kavenoky 1978, Hebert 1993). The aim is to preserve the reaction rates from the transport equation also in the diffusion approximation.
- •The pin-by-pin code **HEX3DP** calculates the fuel rod and fuel pin power and burn-up distribution in the reactor core.
- •The other characteristics: criticality parameters, reactivity coefficients, control group worth, total control rods worth, assembly and nodal power and burn-up distribution are calculating with the nodal code **HEX3DA**.
- •Actually, **HEX3DA** is running simultaneously with **HEX3DP**, so that the main results from both codes are available for visualization module **HEX3VI**.

Fig. 6. FA types in cycle 31 (APA-H)

@

Fig. 7a. FA PPF Kq_i , FR PPF Kr_{ik} and FA Burn-up at the BOC (APA-H)

The difference between the APA-H and HELHEX calculated assembly relative power Kq_i is usually less than 0.02, for single assemblies can reach up to 0.03, but for the assemblies with maximum Kq_i is about 0.01.

Fig. 7b. FA type, FA PPF Kq_i and FA Burn-up at the BOC (HELHEX)

The difference between the APA-H and HELHEX calculated relative rod power Kr_{ik} , is in the frame of 0.03, but for the assemblies with maximum Kr_{ik} is less than 0.02.

The difference between APA-H and HELHEX calculated assembly burn-up Bu_i is about 0.1-0.2MWd/kgU.

Fig. 7c. FA type, FR PPF Kr_{ik} and FA Burn-up at the BOC (HELHEX)

					U	•											20 10 10 1	4 4 4	
			NT.	C _{H3BO}	3, g/kg	Ka	Nas	Kq	Nas	Kv	Nas	NIv	Kv	Na	NIV	Kr	Nas	Kr	Nas
	T, fpd	t _{in} , °C	MW	Α	Н	A	١	🖊 H	4		Α		1	Н		\	4	≠ F	4
	0	286.5	3120	6.63	6.46	1.33	30	1.32	30	1.53	30	12	1.53	30	17	1.49	9	1.47	9
	5.00/3.52	286.5	3120	6.52	6.49	1.34	30	1.33	30	1.54	30	12	1.54	30	17	1.48	9	1.46	24
	10	286.5		6.35	6.28	1.34	30	1.33	30	1.52	30		1.52	30	17	1.48	9	1.46	24
	20	286.5	3120	6.05	6.01	1.33			30	1.50	30	.0 5 2	1.50	30	17		< 0 9 0 4		24
	40	286.5		5.60	5.60	1.31	30	1.30	30	1.49	10	9	1.47	10	14	1.49	9	1.46	24
	60	286.5	3120	5.22	5.20	1.29	10	1.28	10	1.50	10	8	1.47	10	13	1.49	9	1.46	24
	80	286.5		4.82	4.79	1.30	10	1.29	10	1.51	10	8	1.48	10	11	1.49	9	1.46	24
	100	286.5	3120	4.43	4.38	1.31	10	1.30	10	1.52	10	7	1.48	10	10	1.49	24	1.45	24
	120	286.5	3120	4.45	3.98	1.32	10	1.31	10	1.53	10	7	1.49	10	10	1.49	9	1.46	10
	140	286.5	3120	3.67	3.59	1.34	10	1.32	10	1.55	10	6	1.51	10	9	1.50	9	1.46	10
	160										-			10					
		286.5	3120	3.31	3.21	1.35	10	1.33	10	1.57	10	6	1.52		9	1.50	9	1.47	10
	180	286.5		2.95	2.84	1.36	35	1.35	10	1.58	10	6	1.54	10	8	1.50	9	1.48	10
	200	286.5		2.59	2.46	1.37	10	1.35	10	1.58	10	6	1.54	35	8	1.50	10	1.49	10
	220	286.5	3120	2.21	2.08	1.37	114	1.36	10	1.58	10	5	1.55	154	7	1.50	114	1.49	35
	240	286.5	3120	1.82	1.68	1.37	114	1.36	154	1.57	10	5	1.54	154	6	1.50	114	1.49	114
	260	286.5	3120	1.41	1.27	1.37	114	1.36	154	1.55	50	5	1.54	154	6	1.49	114	1.48	154
	280	286.5	3120	0.99	0.85	1.36	154	1.35	154	1.54	10	4	1.52	154	6	1.48	154	1.47	154
	300	286.5	3120	0.56	0.42	1.36	129	1.35	154	1.52	129	4	1.51	154	5	1.47	129	1.47	154
3	325.8/319.5	286.5	3120	0.00	0.00	1.35	154	1.34	154	1.51	10	4	1.50	154	5	1.46	101	1.46	154
	T, fpd	Ko	Nas NI	v Ko	Nas	NIv		Km			Km				AO, %		BU		gU
	1, τρα	A		1	Н				Α			Н			Α	Н	Α		Н
	0	1.77	9 1		0 1	4g/k	σ	0.86	33	12	0.96		22		-1.28	-0.95	20.42		20.43
	5.00/3.52	1.74	9 1	/				0.87	29	12	0.96		22			-0.99	20.63		20.58
	10 20	1.72 1.71	<0.05°		~6	fpd		0.86 0.84	29 41	12 11	0.96		25 25		-1.32 -1.66	-0.85 -0.59	20.83 21.25		20.84 21.25
	40	1.71	9 9		9	13		0.84	9	20	0.90		25			-0.39	22.06		22.07
	60	1.71	9 8		9	12		0.84	9	20	0.90		25		-2.76	0.21	22.88		22.89
	80	1.71	9 8	1.66	9	11		0.84	9	20	0.96		25		-2.96	0.57	23.70		23.72
	100	1.71	9 7		10	10		0.84	9	20	0.96		25		-3.14	0.90	24.52		24.54
	120	1.71	9 7		10	9		0.84	9	20	0.96		25		-3.41	1.21	25.34		25.36
	140	1.72	10 6		10	9		0.84	9	20	0.9		25		-3.64	1.48	26.16		26.18
	160	1.74	10 6		10	8		0.84	9	20	0.9		25		-3.80	1.75	26.98		27.00
	180 200	1.75 1.74	10 6 10 5		10 35	8 7		0.84 0.84	11 11	6 5	0.9		25 25		-3.92 -3.77	1.99 2.15	27.80 28.62		27.82 28.64
	220	1.74	10 5		154	7		0.85	9	21	0.9		25		-3.47	2.13	29.44		20.04 29.46
	240	1.72	10 5		154	6		0.86	9	21	0.9		25		-3.02	2.07	30.26		30.28
	260	1.69	10 4		154	6		0.87	9	21	0.96		25		-2.52	1.90	31.08		31.10
	280	1.68	10 4	1.67	154	6		0.88	9	21	0.96	5 101	25		-2.13	1.67	31.90	3	31.93
	300	1.66	129 4		154	5		0.88	9	21	0.96		25		-1.89	1.46	32.72		32.75
	325.8/319.5	1.64	10 4	1.64	154	5	(0.88	9	22	0.9	5 101	25		-1.73	1.30	33.78	3	33.55

Table 2. FA and FR maximum PPFs for 31st cycle (APA-H and HELHEX)

Kq, Kr

Fig. 8. C_{H3BO3}, FA and FR maximum PPFs for 31st cycle (APA-H and HELHEX)

According to the refueling methodology, the most important safety parameter is the linear power in the fuel rods Ql_{ijk} [W/cm].

Fig. 9. LHR $(Ql_{ijk} [W/cm])$ vs FR Burn-up (APA-H and HELHEX)

Fig. 10. LHR (Ql_{ijk} [W/cm]) vs Hcore (APA-H and HELHEX)

- Hot Zero Power physics tests at the BOC are the first opportunity to compare the core design calculations with the measurements.
- The aim of HZP physics tests is to confirm experimentally the predicted neutron-physics characteristics and to prove that the reactor core is designed according to the safety requirements.
- Usually there are 4 tests performed at Kozloduy NPP at HZP:
 - critical boric acid concentration at HZP: test criterion: ±0.5g/kg;
 - isothermal reactivity coefficient (ITRC): test criterion: ±4pcm/°C;
 - ◆ 10th (working) group worth: test criterion: ±15%;
 - total control rods worth: test criterion: $\pm 20\%$.
- All acceptance criteria have been met at the beginning of cycle 31.

	-				С _{Н3} ВО	[g/kg]		
№	T [fpd]	t _{in} [°C]	P _{1K.} [kgf/cm ²]	H_{10}	Exp.	APA-H	APA-H – Exp [g/kg]	
				[cm]				
1	0.00	276.7	159.9	136	9.39	9.72	0.33	
2	0.00	277.9	159.6	154	9.58	9.74	0.16	
3	0.00	272.1	159.9	128	9.58	9.73	0.15	
4	0.00	277.0	157.4	152	9.58	9.74	0.16	
5	0.00	277.6	159.2	312	10.07	10.09	0.02	
6	0.00	272.6	157.9	300	10.07	10.08	0.01	
7	0.00	278.4	158.1	318	10.07	10.10	0.03	
8	0.00	276.6	159.5	312	10.07	10.09	0.02	
9	0.00	276.3	159.3	116	9.46	9.69	0.23	
10	0.00	278.2	159.2	150	9.58	9.73	0.15	
11	0.00	276.3	160.7	51	9.52	9.64	0.12	

Test criterion: ± 0.5 g/kg

	F	,	D	11	$C_{H_3BO_3}^{\text{крит.}}$	[g/kg]	HELHEX – Exp [g/kg]	
№	T [fpd]	t _{in} [°C]	$\frac{P_{1\kappa}}{[kgf/cm^2]}$	H ₁₀	Exp.	HELHEX		
1	0.00	276.7	159.9	136	9.39	9.74	0.35	
2	0.00	277.9	159.6	154	9.58	9.75	0.17	
3	0.00	272.1	159.9	128	9.58	9.76	0.18	
4	0.00	277.0	157.4	152	9.58	9.76	0.18	
5	0.00	277.6	159.2	312	10.07	10.12	0.05	
6	0.00	272.6	157.9	300	10.07	10.12	0.05	
7	0.00	278.4	158.1	318	10.07	10.14	0.07	
8	0.00	276.6	159.5	312	10.07	10.13	0.06	
9	0.00	276.3	159.3	116	9.46	9.70	0.24	
10	0.00	278.2	159.2	150	9.58	9.75	0.17	
11	0.00	276.3	160.7	51	9.52	9.65	0.13	

Table 3. Critical boric acid concentration at HZP tests – U5/C31 (APA-H and HELHEX)

Fig. 11. Temperature and reactivity change at $H_{10} \sim 37\%$ - U5/C31

№	P _{1k} [kgf/cm ²]	t _i [°(Δt _{in} [°C]	H _{1÷9} [cm]		[₁₀ m]	Δρ [×10 ⁻² %]	$\frac{\partial \rho / \partial t_{\text{H}_2\text{O}}}{[\times 10^{-3}]}$	+ ∂ρ/∂t _U % /°C]	Exp APAH [×10 ⁻³ % /°C]	
	[Kgi/ciii]	beg.	end	[C]	[CIII]	beg.	end	[^10 /0]	Exp.	APA-H	[^10 /0/ C]	
1	159.9	272.1	272.8	0.7	354	128	132	-0.61				
2	159.6	272.8	273.6	0.8	354	132	136	-0.73	0.52	-8.56	0.02	
3	159.2	273.6	275.2	1.6	354	136	144	-1.37	-8.53	-8.30	0.03	
4	158.4	275.2	277.0	1.8	354	144	152	-1.47				
									$\partial \rho / \partial t_{\text{H}_2\text{O}} + \partial \rho / \partial t_{\text{U}}$ [×10 ⁻³ % / °C]			
№	P _{1k} [kgf/cm ²]	t _i [°(Δt _{in}	H _{1÷9}		[₁₀ m]	Δρ [×10 ⁻² %]	∂ρ/∂t _{H2} O [×10 ⁻³	+ ∂ρ/∂t _U % / °C]	Exp HELH [×10 ⁻³ % / °C]	
№	P _{1k} [kgf/cm ²]			Δt_{in} [°C]	H _{1÷9} [cm]			Δρ [×10 ⁻² %]	∂ρ/∂t _{H2} O [×10 ⁻³ Exp.	+ ∂ρ/∂t _U % /°C] HELHEX	Exp HELH [×10 ⁻³ % / °C]	
№		[°(C]			[c:	m]					
№ 1 2	[kgf/cm ²]	[°(beg.	end	[°C]	[cm]	beg.	m] end	[×10 ⁻² %]	Exp.	HELHEX	[×10 ⁻³ % / °C]	
1	[kgf/cm ²] 159.9	beg. 272.1	end 272.8	[°C]	[cm]	beg. 128	m] end 132	[×10 ⁻² %] -0.61				

Table 4. ITRC at HZP tests – U5/C31 (APA-H and HELHEX)

Test criterion: ±4pcm/°C

Fig. 12. Temperature and reactivity change at H_{10} ~85% - U5/C31

Test criterion: ±4pcm/	°C
------------------------	----

№	$P_{1\kappa}$ [kgf/cm ²]	t _i		Δt_{in} [°C]	H _{1÷9}	H ₁₀ [cm]		[cm]		1 10		+ ∂ρ/∂t _U % /°C]	Exp APAH [×10 ⁻³ % / °C]
	[Kgi/ciii]	beg.	end	ر کا	[CIII]	beg.	end	[^10 /0]	Exp.	APA-H	[^10 /0/ C]		
1	157.9	272.6	274.6	2.0	354	300	306	-1.30		6.22	0.09		
2	157.7	274.6	275.9	1.3	354	306	310	-0.83	6.24				
3	157.4	275.9	277.3	1.4	354	310	314	-0.75	-6.24	-6.33			
4	157.5	277.3	278.4	1.1	354	314	318	-0.74					

No	P _{1κ} [kgf/cm ²]	t _{вх.} [°C]		Δt_{BX} . [°C]	H _{1÷9}	H _{1÷9}		Δρ [×10 ⁻² %]	$\partial \rho / \partial t_{\text{H}_2\text{C}}$ [×10 ⁻³	0 + ∂ρ/∂t _U % /°C]	Exp HELH [×10 ⁻³ % /°C]
	[Kgi/Cili]	beg.	end		[CIII]	beg.	end	[^10 /0]	Exp.	HELHEX	[^10 /0/ C]
1	157.9	272.6	274.6	2.0	354	300	306	-1.30		-8.11	1.87
2	157.7	274.6	275.9	1.3	354	306	310	-0.83	-6.24		
3	157.4	275.9	277.3	1.4	354	310	314	-0.75	-0.24	-0.11	1.67
4	157.5	277.3	278.4	1.1	354	314	318	-0.74			

Table 5. ITRC at HZP tests – U5/C31 (APA-H and HELHEX)

Fig. 13. Working group worth at HZP tests - U5/C31

Fig. 14. Total control rod worth at HZP tests – U5/C31

изм. — пресм. — 100 H_{MEC} Δρ Hgr [cm] $P_{1\kappa}$ **С**ИЗМ. t_{in.} (02-29)[%] изм. Code $N_{\underline{0}}$ H₃BO₃ [kgf/cm²] $[^{\circ}C]$ [%] [cm] $H_{1\underline{\div 9}}$ H_{10} [g/kg]Exp. Calc. Begin 278.2 **HELHEX** 159.2 354 354 150 -6.67 -6.219.58 -6.28 278.2 159.2 End 354 0 0 -6.41-2.07APA-H

Table 6. Total control rod worth at HZP test – U5/C31 (APA-H and HELHEX)

Test criterion: $\pm 20\%$

7. CRITICAL C_{H3BO3} U5/C31

• Critical boric acid concentration: test criterion: ± 0.3 g/kg.

Fig. 15. Critical boric acid concentrations and difference (calc-exp) vs. fuel cycle length – U5/C31

- A comparison between the ICMS (CBPK) and BEACON measured/reconstructed and APA-H and HELHEX calculated assembly power peaking factors (Kq_i) at full power for 20.21fpd and 230.97fpd of 31st cycle of unit 5 is presented in Figs. 16÷18 and 20÷22.
- The differences between ICMS (CBPK) and APA-H and HELHEX are less than 6-7%, except for the 18 FAs next to the reflector see Figs. 16 and 20. The differences between BEACON reconstructed and APA-H and HELHEX calculated Kq_i are less than 4-5% see Fig. 17 and 21. If compare the APA-H and HELHEX calculated assembly relative power, the relative difference is less than 3.4%, except for the central FA see Fig. 18 and 22.
- Concerning the nodal power peaking factors Kv_{ij} , the relative deviation between the measured and APA-H and HELHEX calculated data is less than 10% (Fig. 19 and 23).

Fig. 16. Assembly power distribution at 20.21fpd – U5/C31 (ICMS/APA-H/HEX3DA)

Fig. 17. Assembly power distribution at 20.21fpd – U5/C31 (BEACON/APA-H/HEX3DA)

The relative differences between APA-H and HELHEX calculated assembly relative power, are less than 3.4% except for the central FA.

Fig. 18. Assembly power distribution at 20.21fpd – U5/C31 (APA-H/HEX3DA)

Fig. 19. Assembly nodal power distribution at 20.21fpd – U5/C31 (EXP/CALC)

The differences between ICMS (CBPK) and APA-H and HELHEX are less than 6-7%, except for the 18 FAs next to the reflector.

The relative differences between APA-H and HELHEX calculated assembly relative power, are less than 3%.

Fig. 23. Assembly nodal power distribution at 230.97fpd – U5/C31 (EXP/CALC)

@

Fig. 24. Loading Pattern for Cycle 32 – the second transition cycle

- A comparison between the ICMS (CBPK) and BEACON measured/reconstructed and APA-H and HELHEX calculated assembly power peaking factors (Kq_i) at full power for 10.68fpd of 32^{nd} cycle of unit 5 is presented in Fig. 25 and 26.
- ◆ The differences between ICMS (CBPK) and APA-H and HELHEX are less than 7-8%, except for a couple FAs circled in Fig. 25. This effect is not observed by BEACON not in a such scale. The actual differences between BEACON reconstructed and APA-H and HELHEX calculated Kq_i are less than 4-5%. If compare the APA-H and HELHEX calculated assembly relative power, the relative difference is less than 3.0%, except for the central FA with 5.1% see Fig. 27.
- Concerning the nodal power peaking factors Kv_{ij} , the relative deviation between the measured with BEACON and APA-H and HELHEX calculated data is less than 10% (Fig. 28). For particular FA, the discrepancies between ICMS and BEACON are slightly bigger than 10%, nevertheless both data are measured with the same SPNDs.

Fig. 25. Assembly power distribution at 10.68fpd – U5/C32 (ICMS/ANC-H/HEX3DA)

Fig. 26. Assembly power distribution at 10.68fpd – U5/C32 (BEACON/ANC-H/HEX3DA)

The relative differences between APA-H and HELHEX calculated assembly relative power, are less than 3% except for the central FA.

Fig. 27. Assembly power distribution at 10.68fpd – U5/C32 (ANC-H/HEX3DA)

Fig. 28. Assembly nodal power distribution at 10.68fpd – U5/C32 (EXP/CALC)

11. APA-H SHELL

- APART is a standalone GUI application to quickly handle the majority of the input/output files necessary for APA-H runs.
- APART allows for parallel execution of PHOENIX-H for all user-defined regions in the core computational model.
- With APART any hot full power or cold zero power model for ANC-H can be produced by the user in just a few minutes.
- APART has an automated end of boron cycle search module and is also capable of simulating operation during coastdown until a user defined end of cycle.
- The GUI allows for an easy on-display assembly shuffle using cursor and mouse.
- The GUI can display power and burnup distributions as well as other results from the APA-H output files.

11. APA-H SHELL

Fig. 29. APART - a shell for APA-H was developed at Kozloduy NPP by Dr. Srebrin Kolev

12. CONCLUSIONS

- Information about the experience of RWFA fuel implementation at the Kozloduy NPP Unit 5 is presented and discussed in the paper.
- The comparison between the **predicted** neutron-physics characteristics using APA-H and HELHEX such as critical boric acid concentration; fuel assembly, fuel rod and fuel pin power distributions; fuel assembly burn-up distribution shows a good agreement and acceptable differences of the results, all in the range of codes uncertainties.
- The comparison between the <u>measured/reconstructed</u> and APA-H and HELHEX calculated neutron-physics characteristics critical boric acid concentration at HZP and full power; isothermal reactivity coefficient, working group worth, total control rods worth at HZP; fuel assembly and nodal relative power distribution shows a very good agreement of the measured and calculated results using the two codes.
- The two code packages APA-H and HELHEX can be independently used for the reactor core calculations with sufficient precision.

THANK YOU FOR YOUR ATTENTION!